Maximum likelihood estimate finds that value of parameters that maximize the likelihood. If the likelihood is strictly concave(or negative of likelihood is strictly convex), we are guaranteed to find a unique optimum. This is usually not the case and we end up finding a local optima. Hence, the Maximum likelihood estimate usually finds a local…
Author: MLInterview
What is the difference between deep learning and machine learning?
Deep learning is a subset of Machine Learning. Machine learning is the ability to build “models” that can learn automatically from data, without programming explicit rules. Machine Learning models typically have the ability to generalize to new data. Deep Learning is a field in machine learning where we build multi-layered artificial neural network models to…
What are evaluation metrics for multi-class classification problem (like positive/negative/neutral sentiment analysis)
For multiclass classification(MCC) problems, metrics can be derived from the confusion matrix. Let $tp_i,tn_i,fp_i,fn_i$ denote the true positives, true negatives, false positives, false negatives respectively. MCC problems, usually macro and micro metrics are computed: → Micro metrics (with subscript $\mu$ in table below) are computed by summing up individual tp, tn, fp and fn to…
What is the Page Rank Algorithm ?
How do search engines find what you want? When we search on the internet, we want to see the most relevant pages. Page rank algorithm is a tool to determine which pages are more authorative on the internet based on their popularity to ensure users see pages that are most likely to be of use…
How do you deal with out of vocabulary words during run time when you build a language model ?
Out of vocabulary words are words that are not in the training set, but appear in the test set, real data. The main problem is that the model assigns a probability zero to out of vocabulary words resulting in a zero likelihood. This is a common problem, specially when you have not trained on a…
You want to find food related topics in twitter – how do you go about it ?
One can use any of the topic models above to get topics. However, to direct the topics to contain food related information, specialized topic modeling algorithms are available. However, one simple way to direct the topics to food related things is : Filter tweets by a limited set of food related keywords (food, meal, dinner,…
What are common tools for speech recognition ? What are the advantages and disadvantages of each?
There are several ready tools for speech recognition, that one can use to train custom models given the appropriate dataset. CMU Sphinx : Used more in an academic setting, one of the oldest libraries. Kaldi – hard to set up, very flexible to use. Typically used by academics. Deep Speech – Easy to set up,…
How do you measure quality of Machine translation ?
BLEU (Bilingual evaluation understudy) score is the most common metric used during machine translation. Typically, it is used to measure a candidate translation against a set of reference translations available as ground truth. BLEU score is based on precision – how many of the words in the candidate sentence are in the reference sentence….